// Formatting library for C++ - experimental format string compilation // // Copyright (c) 2012 - present, Victor Zverovich and fmt contributors // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_COMPILE_H_ #define FMT_COMPILE_H_ #include "format.h" FMT_BEGIN_NAMESPACE namespace detail { template <typename Char, typename InputIt> FMT_CONSTEXPR inline counting_iterator copy_str(InputIt begin, InputIt end, counting_iterator it) { return it + (end - begin); } template <typename OutputIt> class truncating_iterator_base { protected: OutputIt out_; size_t limit_; size_t count_ = 0; truncating_iterator_base() : out_(), limit_(0) {} truncating_iterator_base(OutputIt out, size_t limit) : out_(out), limit_(limit) {} public: using iterator_category = std::output_iterator_tag; using value_type = typename std::iterator_traits<OutputIt>::value_type; using difference_type = std::ptrdiff_t; using pointer = void; using reference = void; FMT_UNCHECKED_ITERATOR(truncating_iterator_base); OutputIt base() const { return out_; } size_t count() const { return count_; } }; // An output iterator that truncates the output and counts the number of objects // written to it. template <typename OutputIt, typename Enable = typename std::is_void< typename std::iterator_traits<OutputIt>::value_type>::type> class truncating_iterator; template <typename OutputIt> class truncating_iterator<OutputIt, std::false_type> : public truncating_iterator_base<OutputIt> { mutable typename truncating_iterator_base<OutputIt>::value_type blackhole_; public: using value_type = typename truncating_iterator_base<OutputIt>::value_type; truncating_iterator() = default; truncating_iterator(OutputIt out, size_t limit) : truncating_iterator_base<OutputIt>(out, limit) {} truncating_iterator& operator++() { if (this->count_++ < this->limit_) ++this->out_; return *this; } truncating_iterator operator++(int) { auto it = *this; ++*this; return it; } value_type& operator*() const { return this->count_ < this->limit_ ? *this->out_ : blackhole_; } }; template <typename OutputIt> class truncating_iterator<OutputIt, std::true_type> : public truncating_iterator_base<OutputIt> { public: truncating_iterator() = default; truncating_iterator(OutputIt out, size_t limit) : truncating_iterator_base<OutputIt>(out, limit) {} template <typename T> truncating_iterator& operator=(T val) { if (this->count_++ < this->limit_) *this->out_++ = val; return *this; } truncating_iterator& operator++() { return *this; } truncating_iterator& operator++(int) { return *this; } truncating_iterator& operator*() { return *this; } }; // A compile-time string which is compiled into fast formatting code. class compiled_string {}; template <typename S> struct is_compiled_string : std::is_base_of<compiled_string, S> {}; /** \rst Converts a string literal *s* into a format string that will be parsed at compile time and converted into efficient formatting code. Requires C++17 ``constexpr if`` compiler support. **Example**:: // Converts 42 into std::string using the most efficient method and no // runtime format string processing. std::string s = fmt::format(FMT_COMPILE("{}"), 42); \endrst */ #if defined(__cpp_if_constexpr) && defined(__cpp_return_type_deduction) # define FMT_COMPILE(s) \ FMT_STRING_IMPL(s, fmt::detail::compiled_string, explicit) #else # define FMT_COMPILE(s) FMT_STRING(s) #endif #if FMT_USE_NONTYPE_TEMPLATE_ARGS template <typename Char, size_t N, fmt::detail_exported::fixed_string<Char, N> Str> struct udl_compiled_string : compiled_string { using char_type = Char; explicit constexpr operator basic_string_view<char_type>() const { return {Str.data, N - 1}; } }; #endif template <typename T, typename... Tail> const T& first(const T& value, const Tail&...) { return value; } #if defined(__cpp_if_constexpr) && defined(__cpp_return_type_deduction) template <typename... Args> struct type_list {}; // Returns a reference to the argument at index N from [first, rest...]. template <int N, typename T, typename... Args> constexpr const auto& get([[maybe_unused]] const T& first, [[maybe_unused]] const Args&... rest) { static_assert(N < 1 + sizeof...(Args), "index is out of bounds"); if constexpr (N == 0) return first; else return detail::get<N - 1>(rest...); } template <typename Char, typename... Args> constexpr int get_arg_index_by_name(basic_string_view<Char> name, type_list<Args...>) { return get_arg_index_by_name<Args...>(name); } template <int N, typename> struct get_type_impl; template <int N, typename... Args> struct get_type_impl<N, type_list<Args...>> { using type = remove_cvref_t<decltype(detail::get<N>(std::declval<Args>()...))>; }; template <int N, typename T> using get_type = typename get_type_impl<N, T>::type; template <typename T> struct is_compiled_format : std::false_type {}; template <typename Char> struct text { basic_string_view<Char> data; using char_type = Char; template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&...) const { return write<Char>(out, data); } }; template <typename Char> struct is_compiled_format<text<Char>> : std::true_type {}; template <typename Char> constexpr text<Char> make_text(basic_string_view<Char> s, size_t pos, size_t size) { return {{&s[pos], size}}; } template <typename Char> struct code_unit { Char value; using char_type = Char; template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&...) const { return write<Char>(out, value); } }; // This ensures that the argument type is convertible to `const T&`. template <typename T, int N, typename... Args> constexpr const T& get_arg_checked(const Args&... args) { const auto& arg = detail::get<N>(args...); if constexpr (detail::is_named_arg<remove_cvref_t<decltype(arg)>>()) { return arg.value; } else { return arg; } } template <typename Char> struct is_compiled_format<code_unit<Char>> : std::true_type {}; // A replacement field that refers to argument N. template <typename Char, typename T, int N> struct field { using char_type = Char; template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&... args) const { return write<Char>(out, get_arg_checked<T, N>(args...)); } }; template <typename Char, typename T, int N> struct is_compiled_format<field<Char, T, N>> : std::true_type {}; // A replacement field that refers to argument with name. template <typename Char> struct runtime_named_field { using char_type = Char; basic_string_view<Char> name; template <typename OutputIt, typename T> constexpr static bool try_format_argument( OutputIt& out, // [[maybe_unused]] due to unused-but-set-parameter warning in GCC 7,8,9 [[maybe_unused]] basic_string_view<Char> arg_name, const T& arg) { if constexpr (is_named_arg<typename std::remove_cv<T>::type>::value) { if (arg_name == arg.name) { out = write<Char>(out, arg.value); return true; } } return false; } template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&... args) const { bool found = (try_format_argument(out, name, args) || ...); if (!found) { FMT_THROW(format_error("argument with specified name is not found")); } return out; } }; template <typename Char> struct is_compiled_format<runtime_named_field<Char>> : std::true_type {}; // A replacement field that refers to argument N and has format specifiers. template <typename Char, typename T, int N> struct spec_field { using char_type = Char; formatter<T, Char> fmt; template <typename OutputIt, typename... Args> constexpr FMT_INLINE OutputIt format(OutputIt out, const Args&... args) const { const auto& vargs = fmt::make_format_args<basic_format_context<OutputIt, Char>>(args...); basic_format_context<OutputIt, Char> ctx(out, vargs); return fmt.format(get_arg_checked<T, N>(args...), ctx); } }; template <typename Char, typename T, int N> struct is_compiled_format<spec_field<Char, T, N>> : std::true_type {}; template <typename L, typename R> struct concat { L lhs; R rhs; using char_type = typename L::char_type; template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&... args) const { out = lhs.format(out, args...); return rhs.format(out, args...); } }; template <typename L, typename R> struct is_compiled_format<concat<L, R>> : std::true_type {}; template <typename L, typename R> constexpr concat<L, R> make_concat(L lhs, R rhs) { return {lhs, rhs}; } struct unknown_format {}; template <typename Char> constexpr size_t parse_text(basic_string_view<Char> str, size_t pos) { for (size_t size = str.size(); pos != size; ++pos) { if (str[pos] == '{' || str[pos] == '}') break; } return pos; } template <typename Args, size_t POS, int ID, typename S> constexpr auto compile_format_string(S format_str); template <typename Args, size_t POS, int ID, typename T, typename S> constexpr auto parse_tail(T head, S format_str) { if constexpr (POS != basic_string_view<typename S::char_type>(format_str).size()) { constexpr auto tail = compile_format_string<Args, POS, ID>(format_str); if constexpr (std::is_same<remove_cvref_t<decltype(tail)>, unknown_format>()) return tail; else return make_concat(head, tail); } else { return head; } } template <typename T, typename Char> struct parse_specs_result { formatter<T, Char> fmt; size_t end; int next_arg_id; }; constexpr int manual_indexing_id = -1; template <typename T, typename Char> constexpr parse_specs_result<T, Char> parse_specs(basic_string_view<Char> str, size_t pos, int next_arg_id) { str.remove_prefix(pos); auto ctx = compile_parse_context<Char>(str, max_value<int>(), nullptr, {}, next_arg_id); auto f = formatter<T, Char>(); auto end = f.parse(ctx); return {f, pos + fmt::detail::to_unsigned(end - str.data()), next_arg_id == 0 ? manual_indexing_id : ctx.next_arg_id()}; } template <typename Char> struct arg_id_handler { arg_ref<Char> arg_id; constexpr int operator()() { FMT_ASSERT(false, "handler cannot be used with automatic indexing"); return 0; } constexpr int operator()(int id) { arg_id = arg_ref<Char>(id); return 0; } constexpr int operator()(basic_string_view<Char> id) { arg_id = arg_ref<Char>(id); return 0; } constexpr void on_error(const char* message) { FMT_THROW(format_error(message)); } }; template <typename Char> struct parse_arg_id_result { arg_ref<Char> arg_id; const Char* arg_id_end; }; template <int ID, typename Char> constexpr auto parse_arg_id(const Char* begin, const Char* end) { auto handler = arg_id_handler<Char>{arg_ref<Char>{}}; auto arg_id_end = parse_arg_id(begin, end, handler); return parse_arg_id_result<Char>{handler.arg_id, arg_id_end}; } template <typename T, typename Enable = void> struct field_type { using type = remove_cvref_t<T>; }; template <typename T> struct field_type<T, enable_if_t<detail::is_named_arg<T>::value>> { using type = remove_cvref_t<decltype(T::value)>; }; template <typename T, typename Args, size_t END_POS, int ARG_INDEX, int NEXT_ID, typename S> constexpr auto parse_replacement_field_then_tail(S format_str) { using char_type = typename S::char_type; constexpr auto str = basic_string_view<char_type>(format_str); constexpr char_type c = END_POS != str.size() ? str[END_POS] : char_type(); if constexpr (c == '}') { return parse_tail<Args, END_POS + 1, NEXT_ID>( field<char_type, typename field_type<T>::type, ARG_INDEX>(), format_str); } else if constexpr (c != ':') { FMT_THROW(format_error("expected ':'")); } else { constexpr auto result = parse_specs<typename field_type<T>::type>( str, END_POS + 1, NEXT_ID == manual_indexing_id ? 0 : NEXT_ID); if constexpr (result.end >= str.size() || str[result.end] != '}') { FMT_THROW(format_error("expected '}'")); return 0; } else { return parse_tail<Args, result.end + 1, result.next_arg_id>( spec_field<char_type, typename field_type<T>::type, ARG_INDEX>{ result.fmt}, format_str); } } } // Compiles a non-empty format string and returns the compiled representation // or unknown_format() on unrecognized input. template <typename Args, size_t POS, int ID, typename S> constexpr auto compile_format_string(S format_str) { using char_type = typename S::char_type; constexpr auto str = basic_string_view<char_type>(format_str); if constexpr (str[POS] == '{') { if constexpr (POS + 1 == str.size()) FMT_THROW(format_error("unmatched '{' in format string")); if constexpr (str[POS + 1] == '{') { return parse_tail<Args, POS + 2, ID>(make_text(str, POS, 1), format_str); } else if constexpr (str[POS + 1] == '}' || str[POS + 1] == ':') { static_assert(ID != manual_indexing_id, "cannot switch from manual to automatic argument indexing"); constexpr auto next_id = ID != manual_indexing_id ? ID + 1 : manual_indexing_id; return parse_replacement_field_then_tail<get_type<ID, Args>, Args, POS + 1, ID, next_id>( format_str); } else { constexpr auto arg_id_result = parse_arg_id<ID>(str.data() + POS + 1, str.data() + str.size()); constexpr auto arg_id_end_pos = arg_id_result.arg_id_end - str.data(); constexpr char_type c = arg_id_end_pos != str.size() ? str[arg_id_end_pos] : char_type(); static_assert(c == '}' || c == ':', "missing '}' in format string"); if constexpr (arg_id_result.arg_id.kind == arg_id_kind::index) { static_assert( ID == manual_indexing_id || ID == 0, "cannot switch from automatic to manual argument indexing"); constexpr auto arg_index = arg_id_result.arg_id.val.index; return parse_replacement_field_then_tail<get_type<arg_index, Args>, Args, arg_id_end_pos, arg_index, manual_indexing_id>( format_str); } else if constexpr (arg_id_result.arg_id.kind == arg_id_kind::name) { constexpr auto arg_index = get_arg_index_by_name(arg_id_result.arg_id.val.name, Args{}); if constexpr (arg_index != invalid_arg_index) { constexpr auto next_id = ID != manual_indexing_id ? ID + 1 : manual_indexing_id; return parse_replacement_field_then_tail< decltype(get_type<arg_index, Args>::value), Args, arg_id_end_pos, arg_index, next_id>(format_str); } else { if constexpr (c == '}') { return parse_tail<Args, arg_id_end_pos + 1, ID>( runtime_named_field<char_type>{arg_id_result.arg_id.val.name}, format_str); } else if constexpr (c == ':') { return unknown_format(); // no type info for specs parsing } } } } } else if constexpr (str[POS] == '}') { if constexpr (POS + 1 == str.size()) FMT_THROW(format_error("unmatched '}' in format string")); return parse_tail<Args, POS + 2, ID>(make_text(str, POS, 1), format_str); } else { constexpr auto end = parse_text(str, POS + 1); if constexpr (end - POS > 1) { return parse_tail<Args, end, ID>(make_text(str, POS, end - POS), format_str); } else { return parse_tail<Args, end, ID>(code_unit<char_type>{str[POS]}, format_str); } } } template <typename... Args, typename S, FMT_ENABLE_IF(detail::is_compiled_string<S>::value)> constexpr auto compile(S format_str) { constexpr auto str = basic_string_view<typename S::char_type>(format_str); if constexpr (str.size() == 0) { return detail::make_text(str, 0, 0); } else { constexpr auto result = detail::compile_format_string<detail::type_list<Args...>, 0, 0>( format_str); return result; } } #endif // defined(__cpp_if_constexpr) && defined(__cpp_return_type_deduction) } // namespace detail FMT_MODULE_EXPORT_BEGIN #if defined(__cpp_if_constexpr) && defined(__cpp_return_type_deduction) template <typename CompiledFormat, typename... Args, typename Char = typename CompiledFormat::char_type, FMT_ENABLE_IF(detail::is_compiled_format<CompiledFormat>::value)> FMT_INLINE std::basic_string<Char> format(const CompiledFormat& cf, const Args&... args) { auto s = std::basic_string<Char>(); cf.format(std::back_inserter(s), args...); return s; } template <typename OutputIt, typename CompiledFormat, typename... Args, FMT_ENABLE_IF(detail::is_compiled_format<CompiledFormat>::value)> constexpr FMT_INLINE OutputIt format_to(OutputIt out, const CompiledFormat& cf, const Args&... args) { return cf.format(out, args...); } template <typename S, typename... Args, FMT_ENABLE_IF(detail::is_compiled_string<S>::value)> FMT_INLINE std::basic_string<typename S::char_type> format(const S&, Args&&... args) { if constexpr (std::is_same<typename S::char_type, char>::value) { constexpr auto str = basic_string_view<typename S::char_type>(S()); if constexpr (str.size() == 2 && str[0] == '{' && str[1] == '}') { const auto& first = detail::first(args...); if constexpr (detail::is_named_arg< remove_cvref_t<decltype(first)>>::value) { return fmt::to_string(first.value); } else { return fmt::to_string(first); } } } constexpr auto compiled = detail::compile<Args...>(S()); if constexpr (std::is_same<remove_cvref_t<decltype(compiled)>, detail::unknown_format>()) { return fmt::format( static_cast<basic_string_view<typename S::char_type>>(S()), std::forward<Args>(args)...); } else { return fmt::format(compiled, std::forward<Args>(args)...); } } template <typename OutputIt, typename S, typename... Args, FMT_ENABLE_IF(detail::is_compiled_string<S>::value)> FMT_CONSTEXPR OutputIt format_to(OutputIt out, const S&, Args&&... args) { constexpr auto compiled = detail::compile<Args...>(S()); if constexpr (std::is_same<remove_cvref_t<decltype(compiled)>, detail::unknown_format>()) { return fmt::format_to( out, static_cast<basic_string_view<typename S::char_type>>(S()), std::forward<Args>(args)...); } else { return fmt::format_to(out, compiled, std::forward<Args>(args)...); } } #endif template <typename OutputIt, typename S, typename... Args, FMT_ENABLE_IF(detail::is_compiled_string<S>::value)> format_to_n_result<OutputIt> format_to_n(OutputIt out, size_t n, const S& format_str, Args&&... args) { auto it = fmt::format_to(detail::truncating_iterator<OutputIt>(out, n), format_str, std::forward<Args>(args)...); return {it.base(), it.count()}; } template <typename S, typename... Args, FMT_ENABLE_IF(detail::is_compiled_string<S>::value)> FMT_CONSTEXPR20 size_t formatted_size(const S& format_str, const Args&... args) { return fmt::format_to(detail::counting_iterator(), format_str, args...) .count(); } template <typename S, typename... Args, FMT_ENABLE_IF(detail::is_compiled_string<S>::value)> void print(std::FILE* f, const S& format_str, const Args&... args) { memory_buffer buffer; fmt::format_to(std::back_inserter(buffer), format_str, args...); detail::print(f, {buffer.data(), buffer.size()}); } template <typename S, typename... Args, FMT_ENABLE_IF(detail::is_compiled_string<S>::value)> void print(const S& format_str, const Args&... args) { print(stdout, format_str, args...); } #if FMT_USE_NONTYPE_TEMPLATE_ARGS inline namespace literals { template <detail_exported::fixed_string Str> constexpr auto operator""_cf() { using char_t = remove_cvref_t<decltype(Str.data[0])>; return detail::udl_compiled_string<char_t, sizeof(Str.data) / sizeof(char_t), Str>(); } } // namespace literals #endif FMT_MODULE_EXPORT_END FMT_END_NAMESPACE #endif // FMT_COMPILE_H_