glm-free-api/README.md

595 lines
17 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# GLM AI Free 服务
<hr>
<span>[ 中文 | <a href="README_EN.md">English</a> ]</span>
[![](https://img.shields.io/github/license/llm-red-team/glm-free-api.svg)](LICENSE)
![](https://img.shields.io/github/stars/llm-red-team/glm-free-api.svg)
![](https://img.shields.io/github/forks/llm-red-team/glm-free-api.svg)
![](https://img.shields.io/docker/pulls/vinlic/glm-free-api.svg)
支持GLM-4-Plus高速流式输出、支持多轮对话、支持智能体对话、支持Zero思考推理模型、支持视频生成、支持AI绘图、支持联网搜索、支持长文档解读、支持图像解析零配置部署多路token支持自动清理会话痕迹。
与ChatGPT接口完全兼容。
还有以下十个free-api欢迎关注
Moonshot AIKimi.ai接口转API [kimi-free-api](https://github.com/LLM-Red-Team/kimi-free-api)
阶跃星辰 (跃问StepChat) 接口转API [step-free-api](https://github.com/LLM-Red-Team/step-free-api)
阿里通义 (Qwen) 接口转API [qwen-free-api](https://github.com/LLM-Red-Team/qwen-free-api)
秘塔AI (Metaso) 接口转API [metaso-free-api](https://github.com/LLM-Red-Team/metaso-free-api)
字节跳动豆包接口转API [doubao-free-api](https://github.com/LLM-Red-Team/doubao-free-api)
字节跳动即梦AI接口转API [jimeng-free-api](https://github.com/LLM-Red-Team/jimeng-free-api)
讯飞星火Spark接口转API [spark-free-api](https://github.com/LLM-Red-Team/spark-free-api)
MiniMax海螺AI接口转API [hailuo-free-api](https://github.com/LLM-Red-Team/hailuo-free-api)
深度求索DeepSeek接口转API [deepseek-free-api](https://github.com/LLM-Red-Team/deepseek-free-api)
聆心智能 (Emohaa) 接口转API [emohaa-free-api](https://github.com/LLM-Red-Team/emohaa-free-api)(当前不可用)
## 目录
* [免责声明](#免责声明)
* [效果示例](#效果示例)
* [接入准备](#接入准备)
* [智能体接入](#智能体接入)
* [多账号接入](#多账号接入)
* [Docker部署](#Docker部署)
* [Docker-compose部署](#Docker-compose部署)
* [Render部署](#Render部署)
* [Vercel部署](#Vercel部署)
* [原生部署](#原生部署)
* [推荐使用客户端](#推荐使用客户端)
* [接口列表](#接口列表)
* [对话补全](#对话补全)
* [视频生成](#视频生成)
* [AI绘图](#AI绘图)
* [文档解读](#文档解读)
* [图像解析](#图像解析)
* [refresh_token存活检测](#refresh_token存活检测)
* [注意事项](#注意事项)
* [Nginx反代优化](#Nginx反代优化)
* [Token统计](#Token统计)
* [Star History](#star-history)
## 免责声明
**逆向API是不稳定的建议前往智谱AI官方 https://open.bigmodel.cn/ 付费使用API避免封禁的风险。**
**本组织和个人不接受任何资金捐助和交易,此项目是纯粹研究交流学习性质!**
**仅限自用,禁止对外提供服务或商用,避免对官方造成服务压力,否则风险自担!**
**仅限自用,禁止对外提供服务或商用,避免对官方造成服务压力,否则风险自担!**
**仅限自用,禁止对外提供服务或商用,避免对官方造成服务压力,否则风险自担!**
## 效果示例
### 验明正身Demo
![验明正身](./doc/example-1.png)
### 智能体对话Demo
对应智能体链接:[网抑云评论生成器](https://chatglm.cn/main/gdetail/65c046a531d3fcb034918abe)
![智能体对话](./doc/example-9.png)
### 结合Dify工作流Demo
体验地址https://udify.app/chat/m46YgeVLNzFh4zRs
<img width="390" alt="image" src="https://github.com/LLM-Red-Team/glm-free-api/assets/20235341/4773b9f6-b1ca-460c-b3a7-c56bdb1f0659">
### 多轮对话Demo
![多轮对话](./doc/example-6.png)
### 视频生成Demo
[点击预览](https://sfile.chatglm.cn/testpath/video/c1f59468-32fa-58c3-bd9d-ab4230cfe3ca_0.mp4)
### AI绘图Demo
![AI绘图](./doc/example-10.png)
### 联网搜索Demo
![联网搜索](./doc/example-2.png)
### 长文档解读Demo
![长文档解读](./doc/example-5.png)
### 代码调用Demo
![代码调用](./doc/example-12.png)
### 图像解析Demo
![图像解析](./doc/example-3.png)
## 接入准备
从 [智谱清言](https://chatglm.cn/) 获取refresh_token
进入智谱清言随便发起一个对话然后F12打开开发者工具从Application > Cookies中找到`chatglm_refresh_token`的值这将作为Authorization的Bearer Token值`Authorization: Bearer TOKEN`
![example0](./doc/example-0.png)
### 智能体接入
打开智能体的聊天界面地址栏的一串ID就是智能体的ID复制下来备用这个值将用作调用时的 `model` 参数值。
![example11](./doc/example-11.png)
### 多账号接入
目前似乎限制同个账号同时只能有*一路*输出你可以通过提供多个账号的chatglm_refresh_token并使用`,`拼接提供:
`Authorization: Bearer TOKEN1,TOKEN2,TOKEN3`
每次请求服务会从中挑选一个。
## Docker部署
请准备一台具有公网IP的服务器并将8000端口开放。
拉取镜像并启动服务
```shell
docker run -it -d --init --name glm-free-api -p 8000:8000 -e TZ=Asia/Shanghai vinlic/glm-free-api:latest
```
查看服务实时日志
```shell
docker logs -f glm-free-api
```
重启服务
```shell
docker restart glm-free-api
```
停止服务
```shell
docker stop glm-free-api
```
### Docker-compose部署
```yaml
version: '3'
services:
glm-free-api:
container_name: glm-free-api
image: vinlic/glm-free-api:latest
restart: always
ports:
- "8000:8000"
environment:
- TZ=Asia/Shanghai
```
### Render部署
**注意部分部署区域可能无法连接glm如容器日志出现请求超时或无法连接请切换其他区域部署**
**注意免费账户的容器实例将在一段时间不活动时自动停止运行这会导致下次请求时遇到50秒或更长的延迟建议查看[Render容器保活](https://github.com/LLM-Red-Team/free-api-hub/#Render%E5%AE%B9%E5%99%A8%E4%BF%9D%E6%B4%BB)**
1. fork本项目到你的github账号下。
2. 访问 [Render](https://dashboard.render.com/) 并登录你的github账号。
3. 构建你的 Web ServiceNew+ -> Build and deploy from a Git repository -> Connect你fork的项目 -> 选择部署区域 -> 选择实例类型为Free -> Create Web Service
4. 等待构建完成后复制分配的域名并拼接URL访问即可。
### Vercel部署
**注意Vercel免费账户的请求响应超时时间为10秒但接口响应通常较久可能会遇到Vercel返回的504超时错误**
请先确保安装了Node.js环境。
```shell
npm i -g vercel --registry http://registry.npmmirror.com
vercel login
git clone https://github.com/LLM-Red-Team/glm-free-api
cd glm-free-api
vercel --prod
```
## 原生部署
请准备一台具有公网IP的服务器并将8000端口开放。
请先安装好Node.js环境并且配置好环境变量确认node命令可用。
安装依赖
```shell
npm i
```
安装PM2进行进程守护
```shell
npm i -g pm2
```
编译构建看到dist目录就是构建完成
```shell
npm run build
```
启动服务
```shell
pm2 start dist/index.js --name "glm-free-api"
```
查看服务实时日志
```shell
pm2 logs glm-free-api
```
重启服务
```shell
pm2 reload glm-free-api
```
停止服务
```shell
pm2 stop glm-free-api
```
## 推荐使用客户端
使用以下二次开发客户端接入free-api系列项目更快更简单支持文档/图像上传!
由 [Clivia](https://github.com/Yanyutin753/lobe-chat) 二次开发的LobeChat [https://github.com/Yanyutin753/lobe-chat](https://github.com/Yanyutin753/lobe-chat)
由 [时光@](https://github.com/SuYxh) 二次开发的ChatGPT Web [https://github.com/SuYxh/chatgpt-web-sea](https://github.com/SuYxh/chatgpt-web-sea)
## 接口列表
目前支持与openai兼容的 `/v1/chat/completions` 接口可自行使用与openai或其他兼容的客户端接入接口或者使用 [dify](https://dify.ai/) 等线上服务接入使用。
### 对话补全
对话补全接口与openai的 [chat-completions-api](https://platform.openai.com/docs/guides/text-generation/chat-completions-api) 兼容。
**POST /v1/chat/completions**
header 需要设置 Authorization 头部:
```
Authorization: Bearer [refresh_token]
```
请求数据:
```json
{
// 默认模型glm-4-plus
// zero思考推理模型glm-4-zero / glm-4-think
// 如果使用智能体请填写智能体ID到此处
"model": "glm-4-plus",
// 目前多轮对话基于消息合并实现某些场景可能导致能力下降且受单轮最大token数限制
// 如果您想获得原生的多轮对话体验可以传入首轮消息获得的id来接续上下文
// "conversation_id": "65f6c28546bae1f0fbb532de",
"messages": [
{
"role": "user",
"content": "你叫什么?"
}
],
// 如果使用SSE流请设置为true默认false
"stream": false
}
```
响应数据:
```json
{
// 如果想获得原生多轮对话体验此id你可以传入到下一轮对话的conversation_id来接续上下文
"id": "65f6c28546bae1f0fbb532de",
"model": "glm-4",
"object": "chat.completion",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "我叫智谱清言,是基于智谱 AI 公司于 2023 年训练的 ChatGLM 开发的。我的任务是针对用户的问题和要求提供适当的答复和支持。"
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 1,
"completion_tokens": 1,
"total_tokens": 2
},
"created": 1710152062
}
```
### 视频生成
视频生成接口
**如果您的账号未开通VIP可能会因排队导致生成耗时较久**
**POST /v1/videos/generations**
header 需要设置 Authorization 头部:
```
Authorization: Bearer [refresh_token]
```
请求数据:
```json
{
// 模型名称
// cogvideox默认官方视频模型
// cogvideox-pro先生成图像再作为参考图像生成视频作为视频首帧引导视频效果但耗时更长
"model": "cogvideox",
// 视频生成提示词
"prompt": "一只可爱的猫走在花丛中",
// 支持使用图像URL或者BASE64_URL作为视频首帧参考图像如果使用cogvideox-pro则会忽略此参数
// "image_url": "https://sfile.chatglm.cn/testpath/b5341945-3839-522c-b4ab-a6268cb131d5_0.png",
// 支持设置视频风格卡通3D/黑白老照片/油画/电影感
// "video_style": "油画",
// 支持设置情感氛围:温馨和谐/生动活泼/紧张刺激/凄凉寂寞
// "emotional_atmosphere": "生动活泼",
// 支持设置运镜方式:水平/垂直/推近/拉远
// "mirror_mode": "水平"
}
```
响应数据:
```json
{
"created": 1722103836,
"data": [
{
// 对话ID目前没啥用
"conversation_id": "66a537ec0603e53bccb8900a",
// 封面URL
"cover_url": "https://sfile.chatglm.cn/testpath/video_cover/c1f59468-32fa-58c3-bd9d-ab4230cfe3ca_cover_0.png",
// 视频URL
"video_url": "https://sfile.chatglm.cn/testpath/video/c1f59468-32fa-58c3-bd9d-ab4230cfe3ca_0.mp4",
// 视频时长
"video_duration": "6s",
// 视频分辨率
"resolution": "1440×960"
}
]
}
```
### AI绘图
图像生成接口与openai的 [images-create-api](https://platform.openai.com/docs/api-reference/images/create) 兼容。
**POST /v1/images/generations**
header 需要设置 Authorization 头部:
```
Authorization: Bearer [refresh_token]
```
请求数据:
```json
{
// 如果使用智能体请填写智能体ID到此处否则可以乱填
"model": "cogview-3",
"prompt": "一只可爱的猫"
}
```
响应数据:
```json
{
"created": 1711507449,
"data": [
{
"url": "https://sfile.chatglm.cn/testpath/5e56234b-34ae-593c-ba4e-3f7ba77b5768_0.png"
}
]
}
```
### 文档解读
提供一个可访问的文件URL或者BASE64_URL进行解析。
**POST /v1/chat/completions**
header 需要设置 Authorization 头部:
```
Authorization: Bearer [refresh_token]
```
请求数据:
```json
{
// 如果使用智能体请填写智能体ID到此处否则可以乱填
"model": "glm-4",
"messages": [
{
"role": "user",
"content": [
{
"type": "file",
"file_url": {
"url": "https://mj101-1317487292.cos.ap-shanghai.myqcloud.com/ai/test.pdf"
}
},
{
"type": "text",
"text": "文档里说了什么?"
}
]
}
],
// 如果使用SSE流请设置为true默认false
"stream": false
}
```
响应数据:
```json
{
"id": "cnmuo7mcp7f9hjcmihn0",
"model": "glm-4",
"object": "chat.completion",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "根据文档内容,我总结如下:\n\n这是一份关于希腊罗马时期的魔法咒语和仪式的文本包含几个魔法仪式\n\n1. 一个涉及面包、仪式场所和特定咒语的仪式,用于使某人爱上你。\n\n2. 一个针对女神赫卡忒的召唤仪式,用来折磨某人直到她自愿来到你身边。\n\n3. 一个通过念诵爱神阿芙罗狄蒂的秘密名字,连续七天进行仪式,来赢得一个美丽女子的心。\n\n4. 一个通过燃烧没药并念诵咒语,让一个女子对你产生强烈欲望的仪式。\n\n这些仪式都带有魔法和迷信色彩使用各种咒语和象征性行为来影响人的感情和意愿。"
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 1,
"completion_tokens": 1,
"total_tokens": 2
},
"created": 100920
}
```
### 图像解析
提供一个可访问的图像URL或者BASE64_URL进行解析。
此格式兼容 [gpt-4-vision-preview](https://platform.openai.com/docs/guides/vision) API格式您也可以用这个格式传送文档进行解析。
**POST /v1/chat/completions**
header 需要设置 Authorization 头部:
```
Authorization: Bearer [refresh_token]
```
请求数据:
```json
{
"model": "65c046a531d3fcb034918abe",
"messages": [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "http://1255881664.vod2.myqcloud.com/6a0cd388vodbj1255881664/7b97ce1d3270835009240537095/uSfDwh6ZpB0A.png"
}
},
{
"type": "text",
"text": "图像描述了什么?"
}
]
}
],
"stream": false
}
```
响应数据:
```json
{
"id": "65f6c28546bae1f0fbb532de",
"model": "glm",
"object": "chat.completion",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "图片中展示的是一个蓝色背景下的logo具体地左边是一个由多个蓝色的圆点组成的圆形图案右边是“智谱·AI”四个字字体颜色为蓝色。"
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 1,
"completion_tokens": 1,
"total_tokens": 2
},
"created": 1710670469
}
```
### refresh_token存活检测
检测refresh_token是否存活如果存活live未true否则为false请不要频繁小于10分钟调用此接口。
**POST /token/check**
请求数据:
```json
{
"token": "eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9..."
}
```
响应数据:
```json
{
"live": true
}
```
## 注意事项
### Nginx反代优化
如果您正在使用Nginx反向代理glm-free-api请添加以下配置项优化流的输出效果优化体验感。
```nginx
# 关闭代理缓冲。当设置为off时Nginx会立即将客户端请求发送到后端服务器并立即将从后端服务器接收到的响应发送回客户端。
proxy_buffering off;
# 启用分块传输编码。分块传输编码允许服务器为动态生成的内容分块发送数据,而不需要预先知道内容的大小。
chunked_transfer_encoding on;
# 开启TCP_NOPUSH这告诉Nginx在数据包发送到客户端之前尽可能地发送数据。这通常在sendfile使用时配合使用可以提高网络效率。
tcp_nopush on;
# 开启TCP_NODELAY这告诉Nginx不延迟发送数据立即发送小数据包。在某些情况下这可以减少网络的延迟。
tcp_nodelay on;
# 设置保持连接的超时时间这里设置为120秒。如果在这段时间内客户端和服务器之间没有进一步的通信连接将被关闭。
keepalive_timeout 120;
```
### Token统计
由于推理侧不在glm-free-api因此token不可统计将以固定数字返回。
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=LLM-Red-Team/glm-free-api&type=Date)](https://star-history.com/#LLM-Red-Team/glm-free-api&Date)